New primal-dual weak Galerkin finite element methods for convection-diffusion problems
نویسندگان
چکیده
This article devises a new primal-dual weak Galerkin finite element method for the convection-diffusion equation. Optimal order error estimates are established approximations in various discrete norms and standard L2 norms. A series of numerical experiments conducted reported to verify theoretical findings.
منابع مشابه
Finite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملTaylor-Galerkin-based spectral element methods for convection-diffusion problems
• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version ...
متن کاملFinite Volume Methods for Convection Diffusion Problems
Introduction In this paper we consider cell centered nite di erence approximations for second order convection di usion equations of divergence type Our goal is to construct nite di erence methods of second order of approximation that satisfy the discrete maximum principle The error estimates are in the discrete Sobolev spaces associated with the considered boundary value problem Approximation ...
متن کاملAdaptive Lagrange-Galerkin methods for unsteady convection-diffusion problems
In this paper we derive an a posteriori error bound for the Lagrange–Galerkin discretisation of an unsteady (linear) convection-diffusion problem, assuming only that the underlying space-time mesh is nondegenerate. The proof of this error bound is based on strong stability estimates of an associated dual problem, together with the Galerkin orthogonality of the finite element method. Based on th...
متن کاملA Mixed-Hybrid-Discontinuous Galerkin Finite Element Method for Convection-Diffusion Problems
We propose and analyse a new finite element method for convection diffusion problems based on the combination of a mixed method for the elliptic and a discontinuous Galerkin method for the hyperbolic part of the problem. The two methods are made compatible via hybridization and the combination of both is appropriate for the solution of intermediate convection-diffusion problems. By construction...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Numerical Mathematics
سال: 2021
ISSN: ['1873-5460', '0168-9274']
DOI: https://doi.org/10.1016/j.apnum.2020.12.012